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ABSTRACT. We recall that an R-module M is essential Noetherian (in
short, e-Noetherian) if any ascending chain of essential submodules be-
comes stationary. In this paper, we proved that for a class x of R-
modules which is inherited by taking homomorphic images and exten-
sions respectively, an e-Noetherian R-module M fulfills ascending chain
condition on y-non-summands if and only if M /A fulfills ascending
chain condition on essential x-submodules for each y-non-summands N
of M. Also, we proved that every principal ideal ring R with ascending
chain on essential principal left ideals is e-Noetherian.
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1. INTRODUCTION

In this paper, we consider the ring R as associative ring with unity and
all modules are unital left R-modules. A submodule P is essential if it has
a non-trivial intersection with each non-trivial submodule of M, that is,
PN L #D0, for each non-trivial submodule £ of M. A module M is called
uniform if every non-zero submodule is essential in M. Socle of M is de-
fined as the intersection of all essential submodules of M. In [3], Osofsky
introduced N-chain on partially ordered set and studied the chain condition
on essential submodules and it was demonstrated that for any infinite car-
dinal X, an N-chain condition on essential submodules of a module M is
extremely near to that of R-chain condition on all submodules. She also
demonstrated that a module with the N-chain condition on all submodules
and a semisimple module directly add upto an R with the X-chain condition
on essential submodules. Also in [11], Dung et al. demonstrated that the
ring Endg (M) is a direct sum of a left Artinian ring and a (von Neumann)
regular left-injective ring if M fulfills ascending chain condition on essential
submodules and is a quasi-injective, quasi-projective left R-module. In [13],
authors had studied about the algebraic structure of e-Noetherian modules
and e-Noetherian rings and they discussed several properties regarding these
structures. In [7], the authors examined the structure of e-Artinian modules
and rings and discussed various properties associated with these structures
and also discussed descending chain condition on essential x-submodules
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(summands and non-summands) of M. Motivated by the above discus-
sions, we study furthermore characterizations of e-Noetherian modules and
rings also established several results in terms of y-non-summands. Recall
that an R-module M is called quasi-injective module if for every submodule
N of M, any R-homomorphism from A to M extends to an endomorphism
of M. An R-module M is Noetherian if for any ascending chain of sub-
modules, that is, H1 € Ho € Hg -+ C Hyp C -+ - of M terminates, that is,
there exists some natural number ¢ such that H; = H;41. For example, if
we consider Zgy, then the ascending chain 9Z97 C 3Zo7 C Zoy terminates.
An R-module M is semisimple (completely reducible) if each R-submodule
of M is a direct summand of M. For more details on chain conditions on
modules, refer to [2], [4], and [6].

This paper contains three sections where first section is about preliminary

ideas and basic definitions. In the second section, we have studied about the
characterizations of e-Noetherian modules. We proved that a module M is
e-Noetherian if and only if M /Soc(M) is e-Noetherian (Theorem 2.1), and
if M is an e-Noetherian R-module satisfying ascending chain condition on
finitely generated non-summands, then M /N also satisfies the same for each
fully invariant submodule N of M (Proposition 2.9). We also proved that
if M is an uniserial module which satisfies the ascending chain condition on
essential cyclic submodules, then M is a duo module (Theorem 2.14).
In the third section, we discuss about e-Noetherian rings, and we proved
that every principal ideal ring R with an ascending chain of essential prin-
cipal left ideal A3 C A3 C --- C A, C --- is e-Noetherian (Proposition
3.1). Also, if R is semi-prime e-Noetherian, we demonstrated that R/P
will be a left goldie ring for every minimal prime ideal P of R (Theorem
3.5). Besides, we demonstrated that if R is a ring with idempotent elements
generating each maximal ideal, then R is e-Noetherian (Theorem 3.9).

We will refer [5], [14], [15] and [16] for all the basic terminologies and nota-
tions. In this paper, we consistently denote J(R), Soc(M), Z(rR), E(R)
as jacobson radical of a ring, socle of a module, singular ideal of ring, injec-
tive envelope of ring respectively.

2. Essential Noetherian Modules

An R-module M is called an essential Noetherian (e-Noetherian) module
if, for each essential ascending chain £1 C, Lo C. L3 C, -+ of submodules
of M, there is a natural number m such that £; = L£,, for any i > m.
Clearly, each semisimple module, simple module, finite dimensional vector
space, each uniform Noetherian module are an e-Noetherian. An example
of e-Noetherian module is be Zg;. If we consider the terminating chain
27781 Ce 9781 Ce 3Zg1 Ce Zg1, where every submodule in this chain is
essential and thus Zg; is e-Noetherian.
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Theorem 2.1. An R-module M is e-Noetherian if and only if M /Soc(M)

is e-Noetherian.

Proof. Let M be an e-Noetherian. Since Soc(M) is a finite intersection of
essential submodules and so Soc(M) is an essential submodule of M. Thus,
Soc(M) is e-Noetherian and hence we get the required result. Conversely,
let us consider ascending chain My C, Mo C, --- Co My, o Mpg1 Ce

- of essential submodules of M. Then (My + Soc(M))/Soc(M) C.
(Ma+ Soc(M))/Soc(M) C. -+ C (Ma+Soc(M))/S0c(M) S (Muy1 +
Soc(M))/Soc(M) C, --- is also an ascending chain of essential submodules
in M/Soc(M). Since M/Soc(M) is e-Noetherian so there exists n € N,
such that (Myp41 + Soc(M))/Soc(M) = (My + Soc(M))/Soc(M) for all
r > n. Now, (M, + Soc(M))/Soc(M) = M, for all r. Thus Mp41 = M,.,
hence M is an e-Noetherian. O

Recall from [3], a poset P has the ascending R-chain condition if and only
if for each ordinal x such that there exists a chain of subsets {N,|a < x}
of P with Ng > N, for all 8 < «, we have |s| < X. Clearly Noetherian
modules satisfy Ng-chain condition.

Lemma 2.2. If an e-Noetherian module satisfies Rg-chain condition, then
each submodule and quotient module satisfies Ng-chain condition.

Proof. Proof follows from [3, Lemma 1]. O

Theorem 2.3. Let M be an e-Noetherian R-module fulfilling ascending
Ng-chain condition, where Rg is the minimum cardinal such that

(1) There are less than g members in any family of independent sub-
modules of M.
(2) The set of all essential submodules of M has Ng-chain condition.

Then the collection of all submodules of M has an ascending Ro-chain con-
dition. Conversely, an Wo-chain condition on each submodule of M gives
(1) and (2).

Proof. Suppose {N,|a < k} be an ascending chain of distinct submodules
of M. We established a relationship ” ~ ” on k by a ~ f if and only if
No Ce ./\/'[3 or Nﬁ C. N,, which will be an equivalence relation. The set
{N,} that corresponds to members of an equivalence class is an ascending
chain of essential submodules in the union of the set. So we have by Lemma
2.2, every equivalence class has less than Ny members. Again, we have for
every class contains a smallest member . Then, the well-order set p =
{~ —class representatives v} is a subchain of k. Suppose p denotes the
successor of v in p. Now, for each pu € p, the one which is smallest in
{N;, N, } contains a closed submodule which is nonzero, that is, £, is the
bigger one. These £, are independent and are a bijection with the sets of
successors in p. If p is not finite, then its cardinality is equivalent to the
set of successors. Hence, there must be less than Ny equivalence classes and
since k is a union of classes of items that are less than N, it follows that
|k| < Rg. The converse part is straightforward. O

Theorem 2.4. Let M is an e-Noetherian module satisfying ascending Ng-
chain condition on essential submodules if and only if M/Soc(M) follows
No-chain condition on all submodules.
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Proof. Follows from [3, Theorem 3]. O

Recall from [12], a class x of R-modules is defined as collection of R-
modules that contains the zero module and it is closed under isomorphisms.
A y-module that is also a submodule (summand, non-summands) of M is
referred to as a x-submodule (in order to, y-summand, y-non-summads). A
submodule N of a module M is called fully invariant in M if g(N) C N
for every endomorphism g of M. If N is a fully invariant submodule of M,
then N'= (N N Mj) ® (N N Ms), consequently, M/N = (My +N)/N @&
(Ma+N)/N for all submodules My and Mg of M where M = M1 H Ma.
The following results are related with chain condition on x-non-summands
of module.

Lemma 2.5. If M is an e-Noetherian module fulfilling ascending chain
condition on essential x-non-summands, then so for every submodule of M.

Proof. Proof is similar to [12, lemma 2.3]. O

Proposition 2.6. Suppose x is a class of modules that is closed with respect
to finite direct sums. If M is an R-module fulfilling ascending chain condi-
tion on essential x-non-summands and P, Q be submodules of M such that
PNQ =0, then P has ascending chain condition on essential x-submodules.

Proof. Let M be an e-Noetherian module fulfilling ascending chain condition
on y-non-summands. By Lemma 2.5, P& Q fulfills ascending chain condition
on y-non-summands. Assume that we have a y-submodule K of Q that is
not a direct summands of M. Let Hy C. Ha C. -+ - be any ascending chain
of x-submodules of P. For each i > 1, H; N K =0 and H; ® K is a x-non-
summands of M. So we get H1 DK C. Ha DK C, --- is an ascending chain
of x-non-summands of M and hence H, & K = Hp41 D K = --- for finite
n. Hence, P fulfills ascending chain condition on y-submodules. O

Theorem 2.7. Let x denote a class of R-modules that are closed under
direct summands and finite direct sums respectively, then an e-Noetherian
module M fulfilling ascending chain condition on x-non-summands if and
only if each x-non-summands of M fulfills ascending chain condition on
essential x-submodules.

Proof. We note that the sufficiency part is obvious. Conversely, let M
be an e-Noetherian module fulfilling ascending chain condition on x-non-
summands. Suppose that H is a x-submodule of M such that there exists
a proper ascending chain H = Hy C. Ha C, - -+ of x-non-summands of M.
By hypothesis, there exists a natural number n such that H, is a direct
summand of M. Suppose K is a submodule of M such that M = H,, & K.
For every i > n, H; = Hn ® (H; N K). By hypothesis, there is a properly
ascending chain (Hn, NK) Ce (Hn+1NK) Ce ... of x-submodule of £. By
Proposition 2.6, H is a direct summand of M. Thus, the proof follows. [

Proposition 2.8. Let x be a class of R-modules which is inherited by tak-
ing homomorphic images and extensions, respectively. Then M is an e-
Noetherian R-module fulfills ascending chain condition on essential x-non-
summands if and only if M /N fulfills ascending chain condition on essential
x-submodules for each x-non-summands N of M.
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Proof. Suppose M fulfills ascending chain condition on essential y-non-
summands of M. Assume P; C, P2 Ce --- be an ascending chain condition
of essential essential y-submodules of M/N. For everyi > 1, P; = P;/N for
some arbitrary submodule P; of M, which contains A/. By hypothesis, P; is
a x-submodule of M for all § > 1. By Theorem 2.7, Py, = Pp41 = - - - for fi-
nite n € N, then P, /N = Pp41/N = --- for some natural nunber n. Thus
M/N satisfies the ascending chain condition on essential y-submodules.
Conversely, assume that M /AN fulfills ascending chain condition on essen-
tial y-submodules for every y-non-summands N of M. Let P be any x-
non-summands of M and let K1 C. K2 C. --- be any ascending chain of
x-submodules of M such that P C Ky. Then K1/P C. Ko/P C, --- is
an ascending chain of y-submodules of M /P. There exists a natural num-

ber r such that K,./P = Kpy1/P = --- and obviously K, = Kpyq1 = ---.
By Theorem 2.7, M fulfills ascending chain condition on essential y-non-
summands. O

Proposition 2.9. If M is an e-Noetherian R-module satisfying ascend-
ing chain condition on finitely generated non-summands, then M/N also
satisfies the same for each fully invariant submodule N of M.

Proof. Assume that N is a fully invariant non-zero submodule of M. Let
M = M/N and P C H be finitely generated submodules of M. Now there
exists natural number r, s and elements a;,b; in M (1 <i <71 < j <s)
such that H = (a3 + )R+ -+ + (a, + N)R and P = (b + N)R + -+ +
(bs + N)R. For each 1 < j < s there exists elements r;; € R (1 <4 <r)
and u; € N such that b; = | bjrij+u;. Let zj =7 jair; (1 <j<s).
Then P = (z1+N)R+- - -+ (z+N)R and 21R+- -+ 2R C a1 R+ - -+asR.
Assume that P; C. P2 C. --- represents any ascending chain of finitely
generated non-summands of M. We can assume without loss of generality,
that P; = (P; + N)/N for some ascending chain Py C P C - of finitely
generated submodules of M. Also, we have P; is a non-summands of M
for each ¢ > 1 and by given statement, there is always a natural number &
fulfills P, = Pr+1 = --- and thus P = Pry1="-- O

Recall from [16], a ring R is said to be semiprimary if R/J(R) is semisim-
ple and J(R) is nilpotent. An ideal Z of a ring R is considered as left
T-nilpotent if for every sequence {x,} of elements in Z there is a natural
number n such that x,x,—1 - x32221 = 0 and for § = Endg(R) define
Z={y €S : Ker(y) is an essential R-submodule of M=rR}.

Lemma 2.10. If M is an e-Noetherian R-module, then the ascending chain
condition on essential left annihilators is fulfilled by S = Endg(M).

Proof. Proof is dual of [9, Lemma 1.1] O

Lemma 2.11. Let S be a ring which fulfills the ascending chain condition
on essential left annihilator. Then a subring N of S is T-nilpotent if and
only if N is left milpotent.

Proof. Proof is similar to [10, Proposition 1.5]. O

Proposition 2.12. If M is an e-Noetherian left R-module, then Z is nilpo-
tent.
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Proof. Since S fulfills ascending chain condition on essential left annihila-
tors by Lemma 2.10, it is sufficient to prove that Z is left T-nilpotent. Let
{¥n} be a sequence of elements in Z. Set x; = jj_1---12101. Then
Ker(z1) Ce Ker(xa) Ce -+ Ce Ker(zj) Ce -+ is an ascending chain condi-
tion of essential R-submodules of M. Since M is e-Noetherian then there ex-
ists a natural number n € N such that Ker(xy) = Ker(xpp1) =---. Lety €
Im(xg)NKer(yry1) this implies that y € Im(xy) and y € Ker(igi1). Since
Im(zy) Ce Ker(vgi1) follows from above chain and Im(xzy) N Ker(¢y) =
{0}, implies that y = 0. Thus, Im(zx) N Ker(¢Yix+1) = {0}. Therefore
(M)z N Ker(¢g+1) = {0}. Since Ker(¢g4+1) is an essential R-submodule
of M, it follows that (M)xy = 0. Thus, x = Yrgp_1 - P21 = 0. There-
fore Z is left T-nilpotent, by Lemma 2.11, Z is nilpotent. O

Corollary 2.13. If M is quasi injective e-Noetherian R-module, then S =
Endgr (M) is semiprimary.

Proof. According to [16, Proposition 2], S is semiperfect and Z is the Ja-
cobson radical of Endg(M). By Proposition 2.12, Z is T-nilpotent then it
follows that Endg (M) is semiprimary. O

Recall from [1], a module M is termed as uniserial if for any submodules
L and N of M, it holds that either £L C N or N C £. A submodule N of
M is called an M -cyclic submodule if there exists a submodule L of M such
that N = M/L (see [17]). .

Theorem 2.14. If M fulfills the ascending chain condition on essential
M-cyclic submodules and also be an uniserial module, then M is a duo
module.

Proof. Assume that M satisfies the ascending chain condition on essential
M-cyclic submodules. Let m # 0 be an element of M, and let f be an
endomorphism of M. Suppose that f(m) ¢ mR, then m € f(m)R that is,
there exists some r € R such that m = f(m)r. It follows that for every
positive integer n such that f*(m) = f***(m)r. Thus, any ascending chain
mR C, f(m)R C. f*(m)R C. --- of essential M-cyclic submodules of M.
By hypothesis, there is a positive number k such that f*(m)R = f**1(m)R.
There exists s € R such that f*7!(m) = §*(m)s = f*(ms). This implies
that f*(f(m) — ms) = 0 that is, f(m) — ms € ker(f*). If mR C. ker(f*),
then f¥(m) = 0, which would lead to m = f*(m)r* = 0, a contradiction.
Thus, ker(f*) C. mR and consequently, f(m) — ms € mR this implies that
f(m) € mR, a contradiction. Therefore, f(m) € mR, by [1, lemma 1.1], M
is a duo module. O

3. ESSENTIAL NOETHERIAN RINGS

A ring R is left essential Noetherian (in short, e-Noetherian) if the module
RR is e-Noetherian. Equivalently, we can say that a ring R fulfills ascend-
ing chain condition on essential left ideals of R, that is, for every essential
ascending chain 7; C, Zo C. Z3 C. --- of left ideals of R, there exists a
number n € N such that Z,, = Z; for all j > n. For example division rings,
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finite rings are all e-Noetherian. If there is a finite subset & of R such that
7T =< X >, then an ideal Z of R is finitely generated. If an ideal Z is
generated by one element, then it is known as principal ideal. A principal
ideal ring is a ring R where each ideal is principal. If in addition to R is
also an integral domain, it is known as the principal ideal domain.

Proposition 3.1. A principal ideal ring R with ascending chain of essential
principal left ideals Ay C A3 C--- C A, C --- is e-Noetherian.

Proof. Consider the family of essential principal left ideal of R as {A; : i €
N} such that A, C Apyq for all » € N. Then A = (J;cy As is also essential
principal left ideal of R, as each A; is essential in R. Let A be generated
by an element p € A. Now, since p € A, there exists an index k& € N such
that p € Ag.

We claim that Ag = A, for all » > k. Suppose it is not true, then there
exists r > k such that A, C A, and Ak # A, that is, A, \ Ag is nonempty.
Consider z € A, but & ¢ Ay, then 2 € A = |J;c Aiy 50 2 = gp for some
q € R as p is a generator of A. Also, since Ay, is left ideal and p € Ay, we
have gp € Ay as x = gp implies that x € A which arrives at contradiction
to our supposition. Thus the given chain of essential principal left ideal
terminates. Hence R is e-Noetherian. U

Corollary 3.2. Every principal ideal domain with essential ideal is e-Noetherian.
Proof. The proof follows from the above proposition. O

Proposition 3.3. Assume that R is a commutative ring, then we have

(1) If R is e-Noetherian, then it fulfills the descending chain condition
on annthilators.

(2) If R be self-injective, then R is e-Noetherian if and only if R is
Noetherian.

Proof. (1) Let Ay D. A2 D -+ be a descending chain of an ideals of
R that are annihilators of subsets of R. If we take annihilators,
then we obtain an ascending condition ann(A;) C. ann(A2) C.

--. Because R is e-Noetherian, then there is a natural number n
such that ann(A;) = ann(Ay,) for all ¢ > n. Again, considering
annihilators of the annihilators ideals, we obtain A; = A,, for each
1> n.

(2) Because R is self-injective and e-Noetherian, by the preceding argu-
ment, R holds descending chain condition on annihilators and then
by using [8, Theorem 2], R is Quasi-Frobenius hence R is Noether-
ian. Converse is trivial.

d

Recall from [16], an ideal Z of R is semi-prime if and only if A?> C T
implies A C Z. If {0} is the only semi-prime ideal, a ring R is semi-prime.
If a ring R fulfills the ascending chain condition on left annihilators and
u.dim(rR) < oo, then it is left Goldie. If every element of an ideal Z of a
ring R is nilpotent, the ideal Z is considered to be nil.

Theorem 3.4. A semi-prime left e-Noetherian ring R is a Goldie ring.
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Proof. Let R be an left e-Noetherian ring. Then R satifies descending chain
condition on annihilators by Proposition 3.3(1) after taking annihilators.
Again, by [16, Theorem 11.43], we have R has u.dim(R) < co. Thus, R is
a Goldie ring. O

Theorem 3.5. Let R be a semi-prime left e-Noetherian ring, then for each
simple prime ideal P of R, the quotient R/P forms a Goldie ring.

Proof. Assume R is a semi-prime ring. As R is left e-Noetherian, it fulfills
a descending chain condition on the annihilator ideals which implies that
R has a limited number of simple prime ideals. According to the previous
Theorem 3.4, R is a Goldie ring and thus, by [16, Corollary 11.44], for each
simple prime ideal of R, R/P is a Goldie ring. O

Proposition 3.6. If R is an e-Noetherian ring, then Z(gR) is a nil ideal,
where Z(rR) is a singular ideal.

Proof. Let y € Z(gR) and since R is e-Notherian so we have ann(y™) =
ann(y™1) for some m > 1. We claim that y™ = 0. Assume the contrary
of the statement that y™ # 0. Then anny™) N'Ry™ will have a non-zero
element py™ for some p € R. Again, since py™y™ = 0, because py™ €
ann(y™). Thus we get p € ann(y*™) = ann(y™). This implies py™ = 0,
which is a contradiction. Hence Z(gR) must be a nil ideal. O

We recall that if R is a ring, E(R) be an injective envelope of R and
H = Homgr(E(R),E(R)) and so we can attain a bimodule E(R). Let
Q = Homy(FE(R), E(R)) where Q is known as maximal left quotient ring
of R.

Theorem 3.7. Let R be a non-singular ring with mazimal quotient ring
Q. If M is a left Q-module that is a non-singular left R-module and e-
Noetherian, then M is an e-Noetherian as a Q-module.

Proof. Suppose K1 C. Ko C. --- be an ascending chain of essential O-
submodules of M. Clearly, this is also an ascending chain of R-submodules
of M and therefore, for some n, K, = KC; as R-modules for each i > n. Let
¢; be an endomorphism of R if ¢ € Q, so we have an essential left ideal E of
R such that Eq C. R. Then, for every t € Ky, and e € E, ¢;(eqt) = ep;(qt)
and ¢;(eqt) = eqgi(t), so e(Pi(qt) —qpi(t)) = 0 that is, R(¢i(qt) —q¢i(t)) =0
and because M is non-singular, we get ¢;(qt) = q¢;(t). Hence, ¢; is a O-
endomorphism. O

Proposition 3.8. Assuming R is a regular ring, R is e-Noetherian if and
only if it is semisimple.

Proof. Since R is e-Noetherian, we have each ideal to be finitely generated
and since R being regular means that each finitely generated ideal is a
direct summand of R, which implies that R is semisimple. Converse part is
obvious. O

We recall that an ideal A is said to be primary ideal of R if whenever
zy € A for all z,y € R, then either z € A or y" € A for some natural
number n.
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Theorem 3.9. If R be a ring with idempotent elements generating each
mazximal ideal, then R is an e-Noetherian ring.

Proof. Let A be a primary ideal of R. We claim to show that A is a maximal
ideal otherwise, there exists a maximal ideal m such that A C m. Then,
by hypothesis, m =< e > where e is an idempotent element in R such that
e # 0 or e # 1, since e # 0 implies that R is a field and the proof is trivial.
Then e(1—e) =0 € A, and A is a primary ideal. Thus (1—e)™ € A C m for
some positive integer n, implies that 1 — e € m =< e > gives 1 € m which
is a contradiction. Thus A4 is a maximal ideal. Since every primary ideal
of R is maximal, the concepts maximal, prime and primary ideals coincide.
Hence, by our hypothesis, every maximal ideals is finitely generated. Hence
R is e-Noetherian. O
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